Step
*
1
of Lemma
rel-plus-rel-immediate
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. x : T
4. y : T
5. n : ℕ+
6. λx,y. ((R x y) ∧ (∀z:T. (¬((R x z) ∧ (R z y)))))^n x y
⊢ R^n x y
BY
{ ((MoveToConcl (-3))
THEN (MoveToConcl (-2))
THEN ((NatPlusInd (-1)) THENA Auto)
THEN (D 0 THENA Auto)
THEN RecUnfold `rel_exp` 0
THEN Reduce 0
THEN Try ((RecUnfold `rel_exp` 0 THEN Reduce 0 THEN Complete (Auto))⋅)
THEN AutoSplit
THEN Subst' (n + 1) - 1 ~ n 0
THEN Auto) }
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. x : T
4. y : T
5. n : \mBbbN{}\msupplus{}
6. rel\_exp(T; \mlambda{}x,y. ((R x y) \mwedge{} (\mforall{}z:T. (\mneg{}((R x z) \mwedge{} (R z y))))); n) x y
\mvdash{} rel\_exp(T; R; n) x y
By
Latex:
((MoveToConcl (-3))
THEN (MoveToConcl (-2))
THEN ((NatPlusInd (-1)) THENA Auto)
THEN (D 0 THENA Auto)
THEN RecUnfold `rel\_exp` 0
THEN Reduce 0
THEN Try ((RecUnfold `rel\_exp` 0 THEN Reduce 0 THEN Complete (Auto))\mcdot{})
THEN AutoSplit
THEN Subst' (n + 1) - 1 \msim{} n 0
THEN Auto)
Home
Index