Step
*
2
of Lemma
select-as-reduce
1. n : ℕ
2. u : Top
3. v : Top List
4. reduce(λu,x. case x of inl(i) => if (i =z n) then inr u else inl (i + 1) fi | inr(u) => x;inl 0;v) ~ if ||v|| ≤z n
then inl ||v||
else inr v[||v|| - n + 1]
fi
5. n < ||v|| + 1
6. n < ||v||
⊢ v[||v|| - n + 1] ~ [u / v][(||v|| + 1) - n + 1]
BY
{ Subst' (||v|| + 1) - n + 1 ~ (||v|| - n + 1) + 1 0 }
1
.....equality.....
1. n : ℕ
2. u : Top
3. v : Top List
4. reduce(λu,x. case x of inl(i) => if (i =z n) then inr u else inl (i + 1) fi | inr(u) => x;inl 0;v) ~ if ||v|| ≤z n
then inl ||v||
else inr v[||v|| - n + 1]
fi
5. n < ||v|| + 1
6. n < ||v||
⊢ (||v|| + 1) - n + 1 ~ (||v|| - n + 1) + 1
2
1. n : ℕ
2. u : Top
3. v : Top List
4. reduce(λu,x. case x of inl(i) => if (i =z n) then inr u else inl (i + 1) fi | inr(u) => x;inl 0;v) ~ if ||v|| ≤z n
then inl ||v||
else inr v[||v|| - n + 1]
fi
5. n < ||v|| + 1
6. n < ||v||
⊢ v[||v|| - n + 1] ~ [u / v][(||v|| - n + 1) + 1]
Latex:
Latex:
1. n : \mBbbN{}
2. u : Top
3. v : Top List
4. reduce(\mlambda{}u,x. case x of inl(i) => if (i =\msubz{} n) then inr u else inl (i + 1) fi | inr(u) => x;inl 0\000C;v)
\msim{} if ||v|| \mleq{}z n then inl ||v|| else inr v[||v|| - n + 1] fi
5. n < ||v|| + 1
6. n < ||v||
\mvdash{} v[||v|| - n + 1] \msim{} [u / v][(||v|| + 1) - n + 1]
By
Latex:
Subst' (||v|| + 1) - n + 1 \msim{} (||v|| - n + 1) + 1 0
Home
Index