Step
*
of Lemma
sparse-signed-rep-lemma1
∀m:ℤ. (∃p:ℤ × {-2..3-} [let k,b = p in (m = ((4 * k) + b) ∈ ℤ) ∧ ((|b| = 2 ∈ ℤ)
⇒ (↑isEven(k)))])
BY
{ ((D 0 THENA Auto)
THEN (Evaluate ⌜qr = divrem(m; 4) ∈ (ℤ × ℤ)⌝⋅ THENA Auto)
THEN (RWO "divrem-sq" (-1) THENA Auto)
THEN D -2
THEN (EqHD (-1) THENA Auto)
THEN All Reduce
THEN RenameVar `r' (-3)
THEN RenameVar `q' (-4)
THEN (Assert m = ((4 * q) + r) ∈ ℤ BY
(InstLemma `div_rem_sum` [⌜m⌝;⌜4⌝]⋅ THEN Auto'))
THEN (Decide ⌜r = 3 ∈ ℤ⌝⋅ THENA Auto)) }
1
1. m : ℤ
2. q : ℤ
3. r : ℤ
4. q = (m ÷ 4) ∈ ℤ
5. r = (m rem 4) ∈ ℤ
6. m = ((4 * q) + r) ∈ ℤ
7. r = 3 ∈ ℤ
⊢ ∃p:ℤ × {-2..3-} [let k,b = p
in (m = ((4 * k) + b) ∈ ℤ) ∧ ((|b| = 2 ∈ ℤ)
⇒ (↑isEven(k)))]
2
1. m : ℤ
2. q : ℤ
3. r : ℤ
4. q = (m ÷ 4) ∈ ℤ
5. r = (m rem 4) ∈ ℤ
6. m = ((4 * q) + r) ∈ ℤ
7. ¬(r = 3 ∈ ℤ)
⊢ ∃p:ℤ × {-2..3-} [let k,b = p
in (m = ((4 * k) + b) ∈ ℤ) ∧ ((|b| = 2 ∈ ℤ)
⇒ (↑isEven(k)))]
Latex:
Latex:
\mforall{}m:\mBbbZ{}. (\mexists{}p:\mBbbZ{} \mtimes{} \{-2..3\msupminus{}\} [let k,b = p in (m = ((4 * k) + b)) \mwedge{} ((|b| = 2) {}\mRightarrow{} (\muparrow{}isEven(k)))])
By
Latex:
((D 0 THENA Auto)
THEN (Evaluate \mkleeneopen{}qr = divrem(m; 4)\mkleeneclose{}\mcdot{} THENA Auto)
THEN (RWO "divrem-sq" (-1) THENA Auto)
THEN D -2
THEN (EqHD (-1) THENA Auto)
THEN All Reduce
THEN RenameVar `r' (-3)
THEN RenameVar `q' (-4)
THEN (Assert m = ((4 * q) + r) BY
(InstLemma `div\_rem\_sum` [\mkleeneopen{}m\mkleeneclose{};\mkleeneopen{}4\mkleeneclose{}]\mcdot{} THEN Auto'))
THEN (Decide \mkleeneopen{}r = 3\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index