Nuprl Lemma : sq_stable__assert
∀[b:𝔹]. SqStable(↑b)
Proof
Definitions occuring in Statement : 
assert: ↑b, 
bool: 𝔹, 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ
Lemmas referenced : 
it_wf, 
squash_wf, 
assert_wf, 
assert_witness, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
extract_by_obid, 
hypothesis, 
applyEquality, 
thin, 
because_Cache, 
sqequalHypSubstitution, 
sqequalRule, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[b:\mBbbB{}].  SqStable(\muparrow{}b)
Date html generated:
2017_10_01-AM-09_11_25
Last ObjectModification:
2017_07_26-PM-04_47_28
Theory : general
Home
Index