Step
*
1
1
1
1
of Lemma
streamless-dec-equal
.....truecase.....
1. [T] : Type
2. ∀f:ℕ ⟶ T. ∃i,j:ℕ. ((¬(i = j ∈ ℕ)) ∧ ((f i) = (f j) ∈ T))
3. x : T
4. y : T
5. F : f:(ℕ ⟶ T) ⟶ ℕ
6. ∀f:ℕ ⟶ T. ∃j:ℕ. ((¬((F f) = j ∈ ℕ)) ∧ ((f (F f)) = (f j) ∈ T))
7. j : ℕ
8. ¬((F (λn.x)) = j ∈ ℕ)
9. x = x ∈ T
10. j1 : ℕ
11. ¬((F (λn.if (n =z F (λn.x)) then y else x fi )) = j1 ∈ ℕ)
12. y = if (j1 =z F (λn.x)) then y else x fi ∈ T
13. (F (λn.if (n =z F (λn.x)) then y else x fi )) = (F (λn.x)) ∈ ℤ
⊢ Dec(x = y ∈ T)
BY
{ xxxHypSubst' (-1) (-3)xxx }
1
1. [T] : Type
2. ∀f:ℕ ⟶ T. ∃i,j:ℕ. ((¬(i = j ∈ ℕ)) ∧ ((f i) = (f j) ∈ T))
3. x : T
4. y : T
5. F : f:(ℕ ⟶ T) ⟶ ℕ
6. ∀f:ℕ ⟶ T. ∃j:ℕ. ((¬((F f) = j ∈ ℕ)) ∧ ((f (F f)) = (f j) ∈ T))
7. j : ℕ
8. ¬((F (λn.x)) = j ∈ ℕ)
9. x = x ∈ T
10. j1 : ℕ
11. ¬((F (λn.x)) = j1 ∈ ℕ)
12. y = if (j1 =z F (λn.x)) then y else x fi ∈ T
13. (F (λn.if (n =z F (λn.x)) then y else x fi )) = (F (λn.x)) ∈ ℤ
⊢ Dec(x = y ∈ T)
Latex:
Latex:
.....truecase.....
1. [T] : Type
2. \mforall{}f:\mBbbN{} {}\mrightarrow{} T. \mexists{}i,j:\mBbbN{}. ((\mneg{}(i = j)) \mwedge{} ((f i) = (f j)))
3. x : T
4. y : T
5. F : f:(\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}
6. \mforall{}f:\mBbbN{} {}\mrightarrow{} T. \mexists{}j:\mBbbN{}. ((\mneg{}((F f) = j)) \mwedge{} ((f (F f)) = (f j)))
7. j : \mBbbN{}
8. \mneg{}((F (\mlambda{}n.x)) = j)
9. x = x
10. j1 : \mBbbN{}
11. \mneg{}((F (\mlambda{}n.if (n =\msubz{} F (\mlambda{}n.x)) then y else x fi )) = j1)
12. y = if (j1 =\msubz{} F (\mlambda{}n.x)) then y else x fi
13. (F (\mlambda{}n.if (n =\msubz{} F (\mlambda{}n.x)) then y else x fi )) = (F (\mlambda{}n.x))
\mvdash{} Dec(x = y)
By
Latex:
xxxHypSubst' (-1) (-3)xxx
Home
Index