Step
*
of Lemma
strong-fun-connected-induction
∀[T:Type]
∀f:T ⟶ T
∀[R:T ⟶ T ⟶ ℙ]
(retraction(T;f)
⇒ (∀x:T. R[x;x])
⇒ (∀x,y,z:T.
(y is f*(z)
⇒ (∀u:T. (y is f*(u)
⇒ u is f*(z)
⇒ R[u;z]))
⇒ R[x;z]) supposing
((¬(x = y ∈ T)) and
(x = (f y) ∈ T)))
⇒ {∀x,y:T. (x is f*(y)
⇒ R[x;y])})
BY
{ TACTIC:((UnivCD THENA Auto) THEN D -3) }
1
1. [T] : Type
2. f : T ⟶ T
3. [R] : T ⟶ T ⟶ ℙ
4. h : T ⟶ ℕ
5. ∀x:T. (((f x) = x ∈ T) ∨ h (f x) < h x)
6. ∀x:T. R[x;x]
7. ∀x,y,z:T.
(y is f*(z)
⇒ (∀u:T. (y is f*(u)
⇒ u is f*(z)
⇒ R[u;z]))
⇒ R[x;z]) supposing
((¬(x = y ∈ T)) and
(x = (f y) ∈ T))
⊢ ∀x,y:T. (x is f*(y)
⇒ R[x;y])
Latex:
Latex:
\mforall{}[T:Type]
\mforall{}f:T {}\mrightarrow{} T
\mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]
(retraction(T;f)
{}\mRightarrow{} (\mforall{}x:T. R[x;x])
{}\mRightarrow{} (\mforall{}x,y,z:T.
(y is f*(z) {}\mRightarrow{} (\mforall{}u:T. (y is f*(u) {}\mRightarrow{} u is f*(z) {}\mRightarrow{} R[u;z])) {}\mRightarrow{} R[x;z]) supposing
((\mneg{}(x = y)) and
(x = (f y))))
{}\mRightarrow{} \{\mforall{}x,y:T. (x is f*(y) {}\mRightarrow{} R[x;y])\})
By
Latex:
TACTIC:((UnivCD THENA Auto) THEN D -3)
Home
Index