Nuprl Lemma : sublist-rec-nil-iff
∀[T:Type]. ∀[l:T List].  uiff(sublist-rec(T;[];l);True)
Proof
Definitions occuring in Statement : 
sublist-rec: sublist-rec(T;l1;l2), 
nil: [], 
list: T List, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
true: True, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
true: True, 
prop: ℙ
Lemmas referenced : 
sublist-rec_wf, 
nil_wf, 
sublist-rec-nil, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
introduction, 
cut, 
natural_numberEquality, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
rename, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    uiff(sublist-rec(T;[];l);True)
 Date html generated: 
2016_05_15-PM-03_33_55
 Last ObjectModification: 
2015_12_27-PM-01_12_53
Theory : general
Home
Index