Step
*
1
1
of Lemma
sum-map-append1
.....assertion.....
1. f : Top
2. L : Top List
3. x : Top
4. 0 < ||L|| + ||[x]||
⊢ ∀n:ℕ. ((n ≤ ||L||)
⇒ (Σ(f[L @ [x][i]] | i < n) ~ Σ(f[L[i]] | i < n)))
BY
{ xxx(InductionOnNat
THEN (UnivCD THENA Auto)
THEN Reduce 0
THEN Try (Trivial)
THEN (RWO "sum-unroll" 0 THENA Auto)
THEN AutoSplit
THEN EqCD
THEN Try ((BackThruSomeHyp THEN Auto)))xxx }
1
1. f : Top
2. L : Top List
3. x : Top
4. 0 < ||L|| + ||[x]||
5. n : ℤ
6. 0 < n
7. ((n - 1) ≤ ||L||)
⇒ (Σ(f[L @ [x][i]] | i < n - 1) ~ Σ(f[L[i]] | i < n - 1))
8. n ≤ ||L||
9. 0 < n
⊢ f[L @ [x][n - 1]] ~ f[L[n - 1]]
Latex:
Latex:
.....assertion.....
1. f : Top
2. L : Top List
3. x : Top
4. 0 < ||L|| + ||[x]||
\mvdash{} \mforall{}n:\mBbbN{}. ((n \mleq{} ||L||) {}\mRightarrow{} (\mSigma{}(f[L @ [x][i]] | i < n) \msim{} \mSigma{}(f[L[i]] | i < n)))
By
Latex:
xxx(InductionOnNat
THEN (UnivCD THENA Auto)
THEN Reduce 0
THEN Try (Trivial)
THEN (RWO "sum-unroll" 0 THENA Auto)
THEN AutoSplit
THEN EqCD
THEN Try ((BackThruSomeHyp THEN Auto)))xxx
Home
Index