Step
*
1
1
2
2
1
of Lemma
sum-reindex
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)}
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ;{j:ℕm| ¬(b[j] = 0 ∈ ℤ)} ;f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
8. X : bag(ℕm)
9. bag-no-repeats(ℕm;X)
10. upto(m) = X ∈ {X:bag(ℕm)| bag-no-repeats(ℕm;X)}
11. Y : bag(ℕn)
12. bag-no-repeats(ℕn;Y)
13. upto(n) = Y ∈ {X:bag(ℕn)| bag-no-repeats(ℕn;X)}
⊢ [j∈X|¬b(b[j] =z 0)] = bag-map(f;[i∈Y|¬b(a[i] =z 0)]) ∈ bag(ℕm)
BY
{ (BLemma `bag-extensionality-no-repeats`⋅ THEN Auto) }
1
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)}
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ;{j:ℕm| ¬(b[j] = 0 ∈ ℤ)} ;f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
8. X : bag(ℕm)
9. bag-no-repeats(ℕm;X)
10. upto(m) = X ∈ {X:bag(ℕm)| bag-no-repeats(ℕm;X)}
11. Y : bag(ℕn)
12. bag-no-repeats(ℕn;Y)
13. upto(n) = Y ∈ {X:bag(ℕn)| bag-no-repeats(ℕn;X)}
⊢ bag-no-repeats(ℕm;[j∈X|¬b(b[j] =z 0)])
2
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)}
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ;{j:ℕm| ¬(b[j] = 0 ∈ ℤ)} ;f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
8. X : bag(ℕm)
9. bag-no-repeats(ℕm;X)
10. upto(m) = X ∈ {X:bag(ℕm)| bag-no-repeats(ℕm;X)}
11. Y : bag(ℕn)
12. bag-no-repeats(ℕn;Y)
13. upto(n) = Y ∈ {X:bag(ℕn)| bag-no-repeats(ℕn;X)}
14. bag-no-repeats(ℕm;[j∈X|¬b(b[j] =z 0)])
⊢ bag-no-repeats(ℕm;bag-map(f;[i∈Y|¬b(a[i] =z 0)]))
3
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)}
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ;{j:ℕm| ¬(b[j] = 0 ∈ ℤ)} ;f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
8. X : bag(ℕm)
9. bag-no-repeats(ℕm;X)
10. upto(m) = X ∈ {X:bag(ℕm)| bag-no-repeats(ℕm;X)}
11. Y : bag(ℕn)
12. bag-no-repeats(ℕn;Y)
13. upto(n) = Y ∈ {X:bag(ℕn)| bag-no-repeats(ℕn;X)}
14. x : ℕm
15. x ↓∈ [j∈X|¬b(b[j] =z 0)]
⊢ x ↓∈ bag-map(f;[i∈Y|¬b(a[i] =z 0)])
4
1. n : ℕ
2. a : ℕn ⟶ ℤ
3. m : ℕ
4. b : ℕm ⟶ ℤ
5. f : {i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ⟶ {j:ℕm| ¬(b[j] = 0 ∈ ℤ)}
6. Bij({i:ℕn| ¬(a[i] = 0 ∈ ℤ)} ;{j:ℕm| ¬(b[j] = 0 ∈ ℤ)} ;f)
7. ∀i:{i:ℕn| ¬(a[i] = 0 ∈ ℤ)} . (a[i] = b[f i] ∈ ℤ)
8. X : bag(ℕm)
9. bag-no-repeats(ℕm;X)
10. upto(m) = X ∈ {X:bag(ℕm)| bag-no-repeats(ℕm;X)}
11. Y : bag(ℕn)
12. bag-no-repeats(ℕn;Y)
13. upto(n) = Y ∈ {X:bag(ℕn)| bag-no-repeats(ℕn;X)}
14. x : ℕm
15. x ↓∈ bag-map(f;[i∈Y|¬b(a[i] =z 0)])
⊢ x ↓∈ [j∈X|¬b(b[j] =z 0)]
Latex:
Latex:
1. n : \mBbbN{}
2. a : \mBbbN{}n {}\mrightarrow{} \mBbbZ{}
3. m : \mBbbN{}
4. b : \mBbbN{}m {}\mrightarrow{} \mBbbZ{}
5. f : \{i:\mBbbN{}n| \mneg{}(a[i] = 0)\} {}\mrightarrow{} \{j:\mBbbN{}m| \mneg{}(b[j] = 0)\}
6. Bij(\{i:\mBbbN{}n| \mneg{}(a[i] = 0)\} ;\{j:\mBbbN{}m| \mneg{}(b[j] = 0)\} ;f)
7. \mforall{}i:\{i:\mBbbN{}n| \mneg{}(a[i] = 0)\} . (a[i] = b[f i])
8. X : bag(\mBbbN{}m)
9. bag-no-repeats(\mBbbN{}m;X)
10. upto(m) = X
11. Y : bag(\mBbbN{}n)
12. bag-no-repeats(\mBbbN{}n;Y)
13. upto(n) = Y
\mvdash{} [j\mmember{}X|\mneg{}\msubb{}(b[j] =\msubz{} 0)] = bag-map(f;[i\mmember{}Y|\mneg{}\msubb{}(a[i] =\msubz{} 0)])
By
Latex:
(BLemma `bag-extensionality-no-repeats`\mcdot{} THEN Auto)
Home
Index