Step
*
1
1
2
of Lemma
taba_wf
1. A : Type
2. B : Type
3. init : B
4. F : A ⟶ A ⟶ B ⟶ B
5. xs : A List
6. u : A
7. v : A List
8. ∀ys:A List
((||v|| ≤ ||ys||)
⇒ (rec-case(v) of
[] => <init, ys>
x::xs' =>
p.let a,ys = p
in let h,t = ys
in <F[x;h;a], t> ∈ {p:B × (A List)| (||v|| + ||snd(p)||) = ||ys|| ∈ ℤ} ))
⊢ ∀ys:A List
(((||v|| + 1) ≤ ||ys||)
⇒ (let a,ys = rec-case(v) of
[] => <init, ys>
h@0::t =>
r.let a,ys = r
in let h,t = ys
in <F[h@0;h;a], t>
in let h,t = ys
in <F[u;h;a], t> ∈ {p:B × (A List)| ((||v|| + 1) + ||snd(p)||) = ||ys|| ∈ ℤ} ))
BY
{ xxx((RepeatFor 2 (ParallelLast) THENA Auto') THEN GenConclAtAddr [2;1] THEN Thin (-1))xxx }
1
1. A : Type
2. B : Type
3. init : B
4. F : A ⟶ A ⟶ B ⟶ B
5. xs : A List
6. u : A
7. v : A List
8. ∀ys:A List
((||v|| ≤ ||ys||)
⇒ (rec-case(v) of
[] => <init, ys>
x::xs' =>
p.let a,ys = p
in let h,t = ys
in <F[x;h;a], t> ∈ {p:B × (A List)| (||v|| + ||snd(p)||) = ||ys|| ∈ ℤ} ))
9. ys : A List
10. (||v|| + 1) ≤ ||ys||
11. rec-case(v) of
[] => <init, ys>
x::xs' =>
p.let a,ys = p
in let h,t = ys
in <F[x;h;a], t> ∈ {p:B × (A List)| (||v|| + ||snd(p)||) = ||ys|| ∈ ℤ}
12. v1 : {p:B × (A List)| (||v|| + ||snd(p)||) = ||ys|| ∈ ℤ}
⊢ let a,ys = v1
in let h,t = ys
in <F[u;h;a], t> ∈ {p:B × (A List)| ((||v|| + 1) + ||snd(p)||) = ||ys|| ∈ ℤ}
Latex:
Latex:
1. A : Type
2. B : Type
3. init : B
4. F : A {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B
5. xs : A List
6. u : A
7. v : A List
8. \mforall{}ys:A List
((||v|| \mleq{} ||ys||)
{}\mRightarrow{} (rec-case(v) of
[] => <init, ys>
x::xs' =>
p.let a,ys = p
in let h,t = ys
in <F[x;h;a], t> \mmember{} \{p:B \mtimes{} (A List)| (||v|| + ||snd(p)||) = ||ys||\} ))
\mvdash{} \mforall{}ys:A List
(((||v|| + 1) \mleq{} ||ys||)
{}\mRightarrow{} (let a,ys = rec-case(v) of
[] => <init, ys>
h@0::t =>
r.let a,ys = r
in let h,t = ys
in <F[h@0;h;a], t>
in let h,t = ys
in <F[u;h;a], t> \mmember{} \{p:B \mtimes{} (A List)| ((||v|| + 1) + ||snd(p)||) = ||ys||\} ))
By
Latex:
xxx((RepeatFor 2 (ParallelLast) THENA Auto') THEN GenConclAtAddr [2;1] THEN Thin (-1))xxx
Home
Index