Step
*
of Lemma
unique-awf
∀[A,I:Type].
∀G:awf-system{i:l}(I;A)
(∃s:I ⟶ awf(A) [((∀i:I. ((s i) = (G s i) ∈ awf(A)))
∧ (∀s':I ⟶ awf(A). ((∀i:I. ((s' i) = (G s' i) ∈ awf(A)))
⇒ (s' = s ∈ (I ⟶ awf(A))))))])
BY
{ TACTIC:(Unfold `awf-system` 0
THEN Auto⋅
THEN ((InstLemma `unique-corec-solution` [⌜λ2T.A + (T List)⌝;⌜I⌝;⌜G⌝]⋅ THENM (Fold `awf` (-1) THEN Auto))
THENA Auto
)) }
1
1. [A] : Type
2. [I] : Type
3. G : ⋂T:{T:Type| ((A + (T List)) ⊆r T) ∧ (awf(A) ⊆r T)} . ((I ⟶ T) ⟶ I ⟶ (A + (T List))) ⋂ Top ⟶ I ⟶ Top@i'
4. ∃!s:I ⟶ awf(A). (s = (G s) ∈ (I ⟶ awf(A)))
⊢ ∃s:I ⟶ awf(A) [((∀i:I. ((s i) = (G s i) ∈ awf(A)))
∧ (∀s':I ⟶ awf(A). ((∀i:I. ((s' i) = (G s' i) ∈ awf(A)))
⇒ (s' = s ∈ (I ⟶ awf(A))))))]
Latex:
Latex:
\mforall{}[A,I:Type].
\mforall{}G:awf-system\{i:l\}(I;A)
(\mexists{}s:I {}\mrightarrow{} awf(A) [((\mforall{}i:I. ((s i) = (G s i)))
\mwedge{} (\mforall{}s':I {}\mrightarrow{} awf(A). ((\mforall{}i:I. ((s' i) = (G s' i))) {}\mRightarrow{} (s' = s))))])
By
Latex:
TACTIC:(Unfold `awf-system` 0
THEN Auto\mcdot{}
THEN ((InstLemma `unique-corec-solution` [\mkleeneopen{}\mlambda{}\msubtwo{}T.A + (T List)\mkleeneclose{};\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}G\mkleeneclose{}]\mcdot{}
THENM (Fold `awf` (-1) THEN Auto)
)
THENA Auto
))
Home
Index