Step
*
1
3
1
2
of Lemma
wellfounded-llex
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. ∀[P:A ⟶ ℙ]. ((∀j:A. ((∀k:A. (<[k;j]
⇒ P[k]))
⇒ P[j]))
⇒ (∀n:A. P[n]))
4. [P] : Des(A;a,b.<[a;b]) ⟶ ℙ
5. ∀j:Des(A;a,b.<[a;b]). ((∀k:Des(A;a,b.<[a;b]). ((k llex(A;a,b.<[a;b]) j)
⇒ P[k]))
⇒ P[j])
6. ∀[a:A]. ∀[m,k:Des(A;a,b.<[a;b])]. (descending(a,b.<[a;b];m @ [a / k]) ∈ ℙ)
7. ∀[a:A]. ∀[m:Des(A;a,b.<[a;b])]. ({k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [a / k])} ∈ Type)
8. [%8] : descending(a,b.<[a;b];[])
9. ∀n:A. ∀m:Des(A;a,b.<[a;b]).
((∀L:Des(A;a,b.<[a;b]). ((L llex(A;a,b.<[a;b]) m)
⇒ P[L]))
⇒ (∀k:{k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [n / k])} . P[m @ [n / k]]))
⊢ ∀k:Des(A;a,b.<[a;b]). ((k llex(A;a,b.<[a;b]) [])
⇒ P[k])
BY
{ (RepeatFor 2 ((D 0 THENA Auto)) THEN RepUR ``llex`` -1 THEN D -1) }
1
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. ∀[P:A ⟶ ℙ]. ((∀j:A. ((∀k:A. (<[k;j]
⇒ P[k]))
⇒ P[j]))
⇒ (∀n:A. P[n]))
4. [P] : Des(A;a,b.<[a;b]) ⟶ ℙ
5. ∀j:Des(A;a,b.<[a;b]). ((∀k:Des(A;a,b.<[a;b]). ((k llex(A;a,b.<[a;b]) j)
⇒ P[k]))
⇒ P[j])
6. ∀[a:A]. ∀[m,k:Des(A;a,b.<[a;b])]. (descending(a,b.<[a;b];m @ [a / k]) ∈ ℙ)
7. ∀[a:A]. ∀[m:Des(A;a,b.<[a;b])]. ({k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [a / k])} ∈ Type)
8. [%8] : descending(a,b.<[a;b];[])
9. ∀n:A. ∀m:Des(A;a,b.<[a;b]).
((∀L:Des(A;a,b.<[a;b]). ((L llex(A;a,b.<[a;b]) m)
⇒ P[L]))
⇒ (∀k:{k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [n / k])} . P[m @ [n / k]]))
10. k : Des(A;a,b.<[a;b])
11. ||k|| < 0 ∧ (∀i:ℕ||k||. (k[i] = ⊥ ∈ A))
⊢ P[k]
2
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. ∀[P:A ⟶ ℙ]. ((∀j:A. ((∀k:A. (<[k;j]
⇒ P[k]))
⇒ P[j]))
⇒ (∀n:A. P[n]))
4. [P] : Des(A;a,b.<[a;b]) ⟶ ℙ
5. ∀j:Des(A;a,b.<[a;b]). ((∀k:Des(A;a,b.<[a;b]). ((k llex(A;a,b.<[a;b]) j)
⇒ P[k]))
⇒ P[j])
6. ∀[a:A]. ∀[m,k:Des(A;a,b.<[a;b])]. (descending(a,b.<[a;b];m @ [a / k]) ∈ ℙ)
7. ∀[a:A]. ∀[m:Des(A;a,b.<[a;b])]. ({k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [a / k])} ∈ Type)
8. [%8] : descending(a,b.<[a;b];[])
9. ∀n:A. ∀m:Des(A;a,b.<[a;b]).
((∀L:Des(A;a,b.<[a;b]). ((L llex(A;a,b.<[a;b]) m)
⇒ P[L]))
⇒ (∀k:{k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [n / k])} . P[m @ [n / k]]))
10. k : Des(A;a,b.<[a;b])
11. ∃i:ℕ. (i < ||k|| ∧ i < 0 ∧ (∀j:ℕi. (k[j] = ⊥ ∈ A)) ∧ <[k[i];⊥])
⊢ P[k]
Latex:
Latex:
1. [A] : Type
2. [<] : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. \mforall{}[P:A {}\mrightarrow{} \mBbbP{}]. ((\mforall{}j:A. ((\mforall{}k:A. (<[k;j] {}\mRightarrow{} P[k])) {}\mRightarrow{} P[j])) {}\mRightarrow{} (\mforall{}n:A. P[n]))
4. [P] : Des(A;a,b.<[a;b]) {}\mrightarrow{} \mBbbP{}
5. \mforall{}j:Des(A;a,b.<[a;b]). ((\mforall{}k:Des(A;a,b.<[a;b]). ((k llex(A;a,b.<[a;b]) j) {}\mRightarrow{} P[k])) {}\mRightarrow{} P[j])
6. \mforall{}[a:A]. \mforall{}[m,k:Des(A;a,b.<[a;b])]. (descending(a,b.<[a;b];m @ [a / k]) \mmember{} \mBbbP{})
7. \mforall{}[a:A]. \mforall{}[m:Des(A;a,b.<[a;b])].
(\{k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [a / k])\} \mmember{} Type)
8. [\%8] : descending(a,b.<[a;b];[])
9. \mforall{}n:A. \mforall{}m:Des(A;a,b.<[a;b]).
((\mforall{}L:Des(A;a,b.<[a;b]). ((L llex(A;a,b.<[a;b]) m) {}\mRightarrow{} P[L]))
{}\mRightarrow{} (\mforall{}k:\{k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [n / k])\} . P[m @ [n / k]]))
\mvdash{} \mforall{}k:Des(A;a,b.<[a;b]). ((k llex(A;a,b.<[a;b]) []) {}\mRightarrow{} P[k])
By
Latex:
(RepeatFor 2 ((D 0 THENA Auto)) THEN RepUR ``llex`` -1 THEN D -1)
Home
Index