Step
*
1
3
2
1
of Lemma
wellfounded-llex
.....wf.....
1. A : Type
2. < : A ⟶ A ⟶ ℙ
3. ∀[P:A ⟶ ℙ]. ((∀j:A. ((∀k:A. (<[k;j]
⇒ P[k]))
⇒ P[j]))
⇒ (∀n:A. P[n]))
4. P : Des(A;a,b.<[a;b]) ⟶ ℙ
5. ∀j:Des(A;a,b.<[a;b]). ((∀k:Des(A;a,b.<[a;b]). ((k llex(A;a,b.<[a;b]) j)
⇒ P[k]))
⇒ P[j])
6. ∀[a:A]. ∀[m,k:Des(A;a,b.<[a;b])]. (descending(a,b.<[a;b];m @ [a / k]) ∈ ℙ)
7. ∀[a:A]. ∀[m:Des(A;a,b.<[a;b])]. ({k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [a / k])} ∈ Type)
8. u : A
9. v : A List
10. descending(a,b.<[a;b];[u / v])
11. ∀n:A. ∀m:Des(A;a,b.<[a;b]).
((∀L:Des(A;a,b.<[a;b]). ((L llex(A;a,b.<[a;b]) m)
⇒ P[L]))
⇒ (∀k:{k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [n / k])} . P[m @ [n / k]]))
⊢ u ∈ A
BY
{ TACTIC:Auto }
Latex:
Latex:
.....wf.....
1. A : Type
2. < : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. \mforall{}[P:A {}\mrightarrow{} \mBbbP{}]. ((\mforall{}j:A. ((\mforall{}k:A. (<[k;j] {}\mRightarrow{} P[k])) {}\mRightarrow{} P[j])) {}\mRightarrow{} (\mforall{}n:A. P[n]))
4. P : Des(A;a,b.<[a;b]) {}\mrightarrow{} \mBbbP{}
5. \mforall{}j:Des(A;a,b.<[a;b]). ((\mforall{}k:Des(A;a,b.<[a;b]). ((k llex(A;a,b.<[a;b]) j) {}\mRightarrow{} P[k])) {}\mRightarrow{} P[j])
6. \mforall{}[a:A]. \mforall{}[m,k:Des(A;a,b.<[a;b])]. (descending(a,b.<[a;b];m @ [a / k]) \mmember{} \mBbbP{})
7. \mforall{}[a:A]. \mforall{}[m:Des(A;a,b.<[a;b])].
(\{k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [a / k])\} \mmember{} Type)
8. u : A
9. v : A List
10. descending(a,b.<[a;b];[u / v])
11. \mforall{}n:A. \mforall{}m:Des(A;a,b.<[a;b]).
((\mforall{}L:Des(A;a,b.<[a;b]). ((L llex(A;a,b.<[a;b]) m) {}\mRightarrow{} P[L]))
{}\mRightarrow{} (\mforall{}k:\{k:Des(A;a,b.<[a;b])| descending(a,b.<[a;b];m @ [n / k])\} . P[m @ [n / k]]))
\mvdash{} u \mmember{} A
By
Latex:
TACTIC:Auto
Home
Index