Step
*
1
of Lemma
dm-neg-properties
1. T : Type
2. eq : EqDecider(T)
3. (λx.¬(x)) = (λx.¬(x)) ∈ (Point(free-DeMorgan-lattice(T;eq)) ⟶ Point(opposite-lattice(free-DeMorgan-lattice(T;eq))))
4. ∀[a,b:Point(free-DeMorgan-lattice(T;eq))].
((¬(a) ∧ ¬(b) = ¬(a ∧ b) ∈ Point(opposite-lattice(free-DeMorgan-lattice(T;eq))))
∧ (¬(a) ∨ ¬(b) = ¬(a ∨ b) ∈ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))))
5. ¬(0) = 0 ∈ Point(free-DeMorgan-lattice(T;eq))
6. ¬(1) = 1 ∈ Point(free-DeMorgan-lattice(T;eq))
7. Point(free-DeMorgan-lattice(T;eq)) ~ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
8. x : Point(free-DeMorgan-lattice(T;eq))
9. y : Point(free-DeMorgan-lattice(T;eq))
10. ¬(x) ∧ ¬(y) = ¬(x ∧ y) ∈ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
11. ¬(x) ∨ ¬(y) = ¬(x ∨ y) ∈ Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
⊢ ¬(x ∧ y) = ¬(x) ∨ ¬(y) ∈ Point(free-DeMorgan-lattice(T;eq))
BY
{ (Symmetry THEN NthHypEq (-2) THEN EqCD THEN Auto) }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. (\mlambda{}x.\mneg{}(x)) = (\mlambda{}x.\mneg{}(x))
4. \mforall{}[a,b:Point(free-DeMorgan-lattice(T;eq))]. ((\mneg{}(a) \mwedge{} \mneg{}(b) = \mneg{}(a \mwedge{} b)) \mwedge{} (\mneg{}(a) \mvee{} \mneg{}(b) = \mneg{}(a \mvee{} b)))
5. \mneg{}(0) = 0
6. \mneg{}(1) = 1
7. Point(free-DeMorgan-lattice(T;eq)) \msim{} Point(opposite-lattice(free-DeMorgan-lattice(T;eq)))
8. x : Point(free-DeMorgan-lattice(T;eq))
9. y : Point(free-DeMorgan-lattice(T;eq))
10. \mneg{}(x) \mwedge{} \mneg{}(y) = \mneg{}(x \mwedge{} y)
11. \mneg{}(x) \mvee{} \mneg{}(y) = \mneg{}(x \mvee{} y)
\mvdash{} \mneg{}(x \mwedge{} y) = \mneg{}(x) \mvee{} \mneg{}(y)
By
Latex:
(Symmetry THEN NthHypEq (-2) THEN EqCD THEN Auto)
Home
Index