Step
*
1
2
of Lemma
fdl-eq-1
1. X : Type
2. x : Base
3. x1 : Base
4. x = x1 ∈ pertype(λas,bs. ((as ∈ X List List) ∧ (bs ∈ X List List) ∧ dlattice-eq(X;as;bs)))
5. x ∈ X List List
6. x1 ∈ X List List
7. dlattice-eq(X;x;x1)
⊢ <λx.Ax, λx.Ax> = <λx.Ax, λx.Ax> ∈ (x = 1 ∈ free-dl-type(X)
⇐⇒ ↑fdl-is-1(x))
BY
{ ((ThinVar `x1' THEN (Subst' 1 ~ [[]] 0 THENA Computation))
THEN Fold `member` 0
THEN RepUR ``fdl-is-1`` 0
THEN RepeatFor 2 (MemCD)
THEN Try (Complete (Auto))
THEN ((EqTypeHD (-1) THENA Auto) ORELSE (MemCD THEN EqTypeCD THEN Auto))) }
1
1. X : Type
2. x : Base
3. x ∈ X List List
4. x1 : x = [[]] ∈ pertype(λas,bs. ((as ∈ X List List) ∧ (bs ∈ X List List) ∧ dlattice-eq(X;as;bs)))
5. x ∈ X List List
6. [[]] ∈ X List List
7. dlattice-eq(X;x;[[]])
⊢ Ax ∈ ↑(∃a∈x.isaxiom(a))_b
2
.....antecedent.....
1. X : Type
2. x : Base
3. x ∈ X List List
4. x1 : ↑(∃a∈x.isaxiom(a))_b@i
⊢ dlattice-eq(X;x;[[]])
Latex:
Latex:
1. X : Type
2. x : Base
3. x1 : Base
4. x = x1
5. x \mmember{} X List List
6. x1 \mmember{} X List List
7. dlattice-eq(X;x;x1)
\mvdash{} <\mlambda{}x.Ax, \mlambda{}x.Ax> = <\mlambda{}x.Ax, \mlambda{}x.Ax>
By
Latex:
((ThinVar `x1' THEN (Subst' 1 \msim{} [[]] 0 THENA Computation))
THEN Fold `member` 0
THEN RepUR ``fdl-is-1`` 0
THEN RepeatFor 2 (MemCD)
THEN Try (Complete (Auto))
THEN ((EqTypeHD (-1) THENA Auto) ORELSE (MemCD THEN EqTypeCD THEN Auto)))
Home
Index