Step
*
1
of Lemma
fdl-hom_wf
.....assertion.....
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
⊢ ((fdl-hom(L;f) 0) = 0 ∈ Point(L)) ∧ ((fdl-hom(L;f) 1) = 1 ∈ Point(L))
BY
{ D 0 }
1
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
⊢ (fdl-hom(L;f) 0) = 0 ∈ Point(L)
2
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
⊢ (fdl-hom(L;f) 1) = 1 ∈ Point(L)
Latex:
Latex:
.....assertion.....
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X {}\mrightarrow{} Point(L)
\mvdash{} ((fdl-hom(L;f) 0) = 0) \mwedge{} ((fdl-hom(L;f) 1) = 1)
By
Latex:
D 0
Home
Index