Step
*
2
of Lemma
fl-meet-0-1
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. ∀x:T + T. ∀c:fset(T + T). (c ∈ face-lattice-constraints(x)
⇒ x ∈ c)
⊢ (x=0) ∧ (x=1) = 0 ∈ Point(face-lattice(T;eq))
BY
{ ((InstLemma `free-dlwc-satisfies-constraints` [⌜T + T⌝;⌜union-deq(T;T;eq;eq)⌝;⌜λ2x.face-lattice-constraints(x)⌝;
⌜inl x⌝]⋅
THENA Try (Complete ((Auto THEN SubsumeC ⌜(T + T) List⌝⋅ THEN Auto)))
)
THEN Try ((Fold `face-lattice` (-1) THEN Reduce (-1)))
THEN (InstHyp [⌜{inl x,inr x }⌝] (-1)⋅ THENA Auto)) }
1
.....antecedent.....
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. ∀x:T + T. ∀c:fset(T + T). (c ∈ face-lattice-constraints(x)
⇒ x ∈ c)
5. ∀c:fset(T + T)
(c ∈ face-lattice-constraints(inl x)
⇒ (/\(λx.free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);x)"(c))
= 0
∈ Point(face-lattice(T;eq))))
⊢ {inl x,inr x } ∈ face-lattice-constraints(inl x)
2
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. ∀x:T + T. ∀c:fset(T + T). (c ∈ face-lattice-constraints(x)
⇒ x ∈ c)
5. ∀c:fset(T + T)
(c ∈ face-lattice-constraints(inl x)
⇒ (/\(λx.free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);x)"(c))
= 0
∈ Point(face-lattice(T;eq))))
6. /\(λx.free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);x)"({inl x,inr x }))
= 0
∈ Point(face-lattice(T;eq))
⊢ (x=0) ∧ (x=1) = 0 ∈ Point(face-lattice(T;eq))
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. \mforall{}x:T + T. \mforall{}c:fset(T + T). (c \mmember{} face-lattice-constraints(x) {}\mRightarrow{} x \mmember{} c)
\mvdash{} (x=0) \mwedge{} (x=1) = 0
By
Latex:
((InstLemma `free-dlwc-satisfies-constraints` [\mkleeneopen{}T + T\mkleeneclose{};\mkleeneopen{}union-deq(T;T;eq;eq)\mkleeneclose{};
\mkleeneopen{}\mlambda{}\msubtwo{}x.face-lattice-constraints(x)\mkleeneclose{};\mkleeneopen{}inl x\mkleeneclose{}]\mcdot{}
THENA Try (Complete ((Auto THEN SubsumeC \mkleeneopen{}(T + T) List\mkleeneclose{}\mcdot{} THEN Auto)))
)
THEN Try ((Fold `face-lattice` (-1) THEN Reduce (-1)))
THEN (InstHyp [\mkleeneopen{}\{inl x,inr x \}\mkleeneclose{}] (-1)\mcdot{} THENA Auto))
Home
Index