Step
*
of Lemma
fl-point
No Annotations
∀[T:Type]. ∀[eq:EqDecider(T)].
Point(face-lattice(T;eq)) ≡ {ac:fset(fset(T + T))|
(↑fset-antichain(union-deq(T;T;eq;eq);ac))
∧ (∀a:fset(T + T). (a ∈ ac
⇒ (∀z:T. (¬(inl z ∈ a ∧ inr z ∈ a)))))}
BY
{ (Auto
THEN Unfold `face-lattice` 0
THEN (RWO "free-dlwc-point" 0 THENA Auto)
THEN (RepeatFor 2 (D 0) THENA Auto)
THEN D -1
THEN MemTypeCD
THEN Auto) }
1
1. T : Type
2. eq : EqDecider(T)
3. x : fset(fset(T + T))@i
4. ↑fset-antichain(union-deq(T;T;eq;eq);x)
5. fset-all(x;a.fset-contains-none(union-deq(T;T;eq;eq);a;x.face-lattice-constraints(x)))
6. ↑fset-antichain(union-deq(T;T;eq;eq);x)
7. a : fset(T + T)@i
8. a ∈ x
9. z : T@i
⊢ ¬(inl z ∈ a ∧ inr z ∈ a)
2
1. T : Type
2. eq : EqDecider(T)
3. x : fset(fset(T + T))@i
4. ↑fset-antichain(union-deq(T;T;eq;eq);x)
5. ∀a:fset(T + T). (a ∈ x
⇒ (∀z:T. (¬(inl z ∈ a ∧ inr z ∈ a))))
6. ↑fset-antichain(union-deq(T;T;eq;eq);x)
⊢ fset-all(x;a.fset-contains-none(union-deq(T;T;eq;eq);a;x.face-lattice-constraints(x)))
Latex:
Latex:
No Annotations
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)].
Point(face-lattice(T;eq)) \mequiv{} \{ac:fset(fset(T + T))|
(\muparrow{}fset-antichain(union-deq(T;T;eq;eq);ac))
\mwedge{} (\mforall{}a:fset(T + T). (a \mmember{} ac {}\mRightarrow{} (\mforall{}z:T. (\mneg{}(inl z \mmember{} a \mwedge{} inr z \mmember{} a)))))\}
By
Latex:
(Auto
THEN Unfold `face-lattice` 0
THEN (RWO "free-dlwc-point" 0 THENA Auto)
THEN (RepeatFor 2 (D 0) THENA Auto)
THEN D -1
THEN MemTypeCD
THEN Auto)
Home
Index