Step
*
2
of Lemma
flattice-equiv-equiv
1. X : Type
2. ((X + X) List List) ⊆r Point(free-dl(X + X))
3. a : Point(free-dl(X + X))@i
4. b : Point(free-dl(X + X))@i
5. flattice-equiv(X;a;b)
⊢ flattice-equiv(X;b;a)
BY
{ (RepeatFor 2 (ParallelLast) THEN ExRepD THEN InstConcl [⌜bs⌝;⌜as⌝]⋅ THEN Auto) }
Latex:
Latex:
1. X : Type
2. ((X + X) List List) \msubseteq{}r Point(free-dl(X + X))
3. a : Point(free-dl(X + X))@i
4. b : Point(free-dl(X + X))@i
5. flattice-equiv(X;a;b)
\mvdash{} flattice-equiv(X;b;a)
By
Latex:
(RepeatFor 2 (ParallelLast) THEN ExRepD THEN InstConcl [\mkleeneopen{}bs\mkleeneclose{};\mkleeneopen{}as\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index