Step
*
1
of Lemma
flattice-order_transitivity
1. [X] : Type
2. as : (X + X) List List@i
3. bs : (X + X) List List@i
4. cs : (X + X) List List@i
5. ∀b:(X + X) List
((b ∈ bs)
⇒ ((∃x:X + X. ((x ∈ b) ∧ (∃y∈b. y = flip-union(x) ∈ (X + X)))) ∨ (∃a:(X + X) List. ((a ∈ as) ∧ a ⊆ b))))
6. ∀b:(X + X) List
((b ∈ cs)
⇒ ((∃x:X + X. ((x ∈ b) ∧ (∃y∈b. y = flip-union(x) ∈ (X + X)))) ∨ (∃a:(X + X) List. ((a ∈ bs) ∧ a ⊆ b))))
7. b : (X + X) List@i
8. (b ∈ cs)
9. a : (X + X) List
10. (a ∈ bs)
11. a ⊆ b
12. x : X + X
13. (x ∈ a)
14. (∃y∈a. y = flip-union(x) ∈ (X + X))
⊢ (x ∈ b)
BY
{ (FLemma `l_contains-member` [-4] THEN Auto) }
Latex:
Latex:
1. [X] : Type
2. as : (X + X) List List@i
3. bs : (X + X) List List@i
4. cs : (X + X) List List@i
5. \mforall{}b:(X + X) List
((b \mmember{} bs)
{}\mRightarrow{} ((\mexists{}x:X + X. ((x \mmember{} b) \mwedge{} (\mexists{}y\mmember{}b. y = flip-union(x)))) \mvee{} (\mexists{}a:(X + X) List. ((a \mmember{} as) \mwedge{} a \msubseteq{} b))))
6. \mforall{}b:(X + X) List
((b \mmember{} cs)
{}\mRightarrow{} ((\mexists{}x:X + X. ((x \mmember{} b) \mwedge{} (\mexists{}y\mmember{}b. y = flip-union(x)))) \mvee{} (\mexists{}a:(X + X) List. ((a \mmember{} bs) \mwedge{} a \msubseteq{} b))))
7. b : (X + X) List@i
8. (b \mmember{} cs)
9. a : (X + X) List
10. (a \mmember{} bs)
11. a \msubseteq{} b
12. x : X + X
13. (x \mmember{} a)
14. (\mexists{}y\mmember{}a. y = flip-union(x))
\mvdash{} (x \mmember{} b)
By
Latex:
(FLemma `l\_contains-member` [-4] THEN Auto)
Home
Index