Step
*
5
of Lemma
free-dist-lattice-adjunction
1. ∀Y:Type. (Point(free-dl(Y)) ~ free-dl-type(Y))
2. ∀Y:Type. ∀y:Y. (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. a1 : Type@i'
4. a2 : Type@i'
5. g : a1 ⟶ a2@i
⊢ (fdl-hom(free-dl(a2);λx.free-dl-generator(g x)) o (λx.free-dl-generator(x)))
= ((λx.free-dl-generator(x)) o g)
∈ (a1 ⟶ Point(free-dl(a2)))
BY
{ ((FunExt THENA Auto) THEN RepUR ``compose`` 0) }
1
1. ∀Y:Type. (Point(free-dl(Y)) ~ free-dl-type(Y))
2. ∀Y:Type. ∀y:Y. (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. a1 : Type@i'
4. a2 : Type@i'
5. g : a1 ⟶ a2@i
6. x : a1
⊢ (fdl-hom(free-dl(a2);λx.free-dl-generator(g x)) free-dl-generator(x)) = free-dl-generator(g x) ∈ Point(free-dl(a2))
Latex:
Latex:
1. \mforall{}Y:Type. (Point(free-dl(Y)) \msim{} free-dl-type(Y))
2. \mforall{}Y:Type. \mforall{}y:Y. (free-dl-generator(y) \mmember{} Point(free-dl(Y)))
3. a1 : Type@i'
4. a2 : Type@i'
5. g : a1 {}\mrightarrow{} a2@i
\mvdash{} (fdl-hom(free-dl(a2);\mlambda{}x.free-dl-generator(g x)) o (\mlambda{}x.free-dl-generator(x)))
= ((\mlambda{}x.free-dl-generator(x)) o g)
By
Latex:
((FunExt THENA Auto) THEN RepUR ``compose`` 0)
Home
Index