Step
*
2
of Lemma
free-dl-functor_wf
1. ∀Y:Type. (Point(free-dl(Y)) ~ free-dl-type(Y))
2. ∀Y:Type. ∀y:Y. (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. X : Type@i'
4. x : X@i
⊢ (fdl-hom(free-dl(X);λx@0.free-dl-generator(x@0)) free-dl-generator(x))
= ((λx.x) free-dl-generator(x))
∈ Point(free-dl(X))
BY
{ ((Subst' (λx.x) free-dl-generator(x) ~ (λx@0.free-dl-generator(x@0)) x 0 THENA (Reduce 0 THEN Auto))
THEN BLemma `fdl-hom-agrees`
THEN Auto) }
Latex:
Latex:
1. \mforall{}Y:Type. (Point(free-dl(Y)) \msim{} free-dl-type(Y))
2. \mforall{}Y:Type. \mforall{}y:Y. (free-dl-generator(y) \mmember{} Point(free-dl(Y)))
3. X : Type@i'
4. x : X@i
\mvdash{} (fdl-hom(free-dl(X);\mlambda{}x@0.free-dl-generator(x@0)) free-dl-generator(x))
= ((\mlambda{}x.x) free-dl-generator(x))
By
Latex:
((Subst' (\mlambda{}x.x) free-dl-generator(x) \msim{} (\mlambda{}x@0.free-dl-generator(x@0)) x 0 THENA (Reduce 0 THEN Auto))
THEN BLemma `fdl-hom-agrees`
THEN Auto)
Home
Index