Step
*
1
1
1
of Lemma
free-dma-hom-is-lattice-hom
1. T : Type
2. eq : EqDecider(T)
3. dm : BoundedDistributiveLattice
4. free-DeMorgan-lattice(T;eq) ∈ BoundedLatticeStructure
5. free-DeMorgan-lattice(T;eq) ∈ BoundedLatticeStructure
⊢ free-DeMorgan-lattice(T;eq)["neg" := λx.¬(x)] ∈ BoundedLatticeStructure
BY
{ ((GenConclTerm ⌜free-DeMorgan-lattice(T;eq)⌝⋅ THENA Auto)
THEN (GenConcl ⌜(λx.¬(x)) = F ∈ Top⌝⋅ THENA Auto)
THEN All Thin) }
1
1. v : BoundedLatticeStructure@i'
2. F : Top@i
⊢ v["neg" := F] ∈ BoundedLatticeStructure
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. dm : BoundedDistributiveLattice
4. free-DeMorgan-lattice(T;eq) \mmember{} BoundedLatticeStructure
5. free-DeMorgan-lattice(T;eq) \mmember{} BoundedLatticeStructure
\mvdash{} free-DeMorgan-lattice(T;eq)["neg" := \mlambda{}x.\mneg{}(x)] \mmember{} BoundedLatticeStructure
By
Latex:
((GenConclTerm \mkleeneopen{}free-DeMorgan-lattice(T;eq)\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConcl \mkleeneopen{}(\mlambda{}x.\mneg{}(x)) = F\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin)
Home
Index