Step
*
1
of Lemma
fset-ac-le-face-lattice1
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
6. fset-all(s;x.inr i ∈b x)
⊢ fset-ac-le(union-deq(T;T;eq;eq);s;(i=1))
BY
{ ((InstLemma `fset-all-iff` [⌜fset(T + T)⌝;⌜deq-fset(union-deq(T;T;eq;eq))⌝]⋅ THENA Auto)
THEN (RWO "-1" (-2) THENA Auto)
THEN Unfold `fset-ac-le` 0
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)
THEN Auto) }
1
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
6. ∀[x:fset(T + T)]. ↑inr i ∈b x supposing x ∈ s
7. x : fset(T + T)
8. x ∈ s
⊢ ¬↑fset-null({y ∈ (i=1) | deq-f-subset(union-deq(T;T;eq;eq)) y x})
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) \msubseteq{}r fset(fset(T + T))
6. fset-all(s;x.inr i \mmember{}\msubb{} x)
\mvdash{} fset-ac-le(union-deq(T;T;eq;eq);s;(i=1))
By
Latex:
((InstLemma `fset-all-iff` [\mkleeneopen{}fset(T + T)\mkleeneclose{};\mkleeneopen{}deq-fset(union-deq(T;T;eq;eq))\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "-1" (-2) THENA Auto)
THEN Unfold `fset-ac-le` 0
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)
THEN Auto)
Home
Index