Step
*
2
of Lemma
fset-ac-le-face-lattice1
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
6. fset-ac-le(union-deq(T;T;eq;eq);s;(i=1))
⊢ fset-all(s;x.inr i ∈b x)
BY
{ ((FLemma `fset-ac-le-implies2` [-1] THENA Auto)
THEN (InstLemma `fset-all-iff` [⌜fset(T + T)⌝;⌜deq-fset(union-deq(T;T;eq;eq))⌝]⋅ THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1)) }
1
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
6. fset-ac-le(union-deq(T;T;eq;eq);s;(i=1))
7. ∀a:fset(T + T). (a ∈ s
⇒ (↓∃b:fset(T + T). (b ∈ (i=1) ∧ b ⊆ a)))
⊢ ∀[x:fset(T + T)]. ↑inr i ∈b x supposing x ∈ s
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. i : T
4. s : fset(fset(T + T))
5. Point(face-lattice(T;eq)) \msubseteq{}r fset(fset(T + T))
6. fset-ac-le(union-deq(T;T;eq;eq);s;(i=1))
\mvdash{} fset-all(s;x.inr i \mmember{}\msubb{} x)
By
Latex:
((FLemma `fset-ac-le-implies2` [-1] THENA Auto)
THEN (InstLemma `fset-all-iff` [\mkleeneopen{}fset(T + T)\mkleeneclose{};\mkleeneopen{}deq-fset(union-deq(T;T;eq;eq))\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN Thin (-1))
Home
Index