Step
*
1
1
of Lemma
implies-le-face-lattice-join
1. T : Type@i'
2. eq : EqDecider(T)@i
3. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
4. x : Point(face-lattice(T;eq))@i
5. y : Point(face-lattice(T;eq))@i
6. z : Point(face-lattice(T;eq))@i
7. ∀s:fset(T + T). (s ∈ z
⇒ ((↑ac-covers(union-deq(T;T;eq;eq);x;s)) ∨ (↑ac-covers(union-deq(T;T;eq;eq);y;s))))
8. s : fset(T + T)@i
9. s ∈ z
10. (↑ac-covers(union-deq(T;T;eq;eq);x;s)) ∨ (↑ac-covers(union-deq(T;T;eq;eq);y;s))
⊢ ↑ac-covers(union-deq(T;T;eq;eq);x ∨ y;s)
BY
{ (Unfold `face-lattice` 0 THEN (RWO "free-dlwc-join" 0 THENA Auto)) }
1
1. T : Type@i'
2. eq : EqDecider(T)@i
3. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
4. x : Point(face-lattice(T;eq))@i
5. y : Point(face-lattice(T;eq))@i
6. z : Point(face-lattice(T;eq))@i
7. ∀s:fset(T + T). (s ∈ z
⇒ ((↑ac-covers(union-deq(T;T;eq;eq);x;s)) ∨ (↑ac-covers(union-deq(T;T;eq;eq);y;s))))
8. s : fset(T + T)@i
9. s ∈ z
10. (↑ac-covers(union-deq(T;T;eq;eq);x;s)) ∨ (↑ac-covers(union-deq(T;T;eq;eq);y;s))
⊢ ↑ac-covers(union-deq(T;T;eq;eq);lub(λs.fset-contains-none(union-deq(T;T;eq;
eq);s;x.face-lattice-constraints(x));x;y);s)
Latex:
Latex:
1. T : Type@i'
2. eq : EqDecider(T)@i
3. Point(face-lattice(T;eq)) \msubseteq{}r fset(fset(T + T))
4. x : Point(face-lattice(T;eq))@i
5. y : Point(face-lattice(T;eq))@i
6. z : Point(face-lattice(T;eq))@i
7. \mforall{}s:fset(T + T)
(s \mmember{} z {}\mRightarrow{} ((\muparrow{}ac-covers(union-deq(T;T;eq;eq);x;s)) \mvee{} (\muparrow{}ac-covers(union-deq(T;T;eq;eq);y;s))))
8. s : fset(T + T)@i
9. s \mmember{} z
10. (\muparrow{}ac-covers(union-deq(T;T;eq;eq);x;s)) \mvee{} (\muparrow{}ac-covers(union-deq(T;T;eq;eq);y;s))
\mvdash{} \muparrow{}ac-covers(union-deq(T;T;eq;eq);x \mvee{} y;s)
By
Latex:
(Unfold `face-lattice` 0 THEN (RWO "free-dlwc-join" 0 THENA Auto))
Home
Index