Step
*
2
of Lemma
lattice-extend-meet
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
⊢ lattice-extend'(L;eq;eqL;f;a) ∧ lattice-extend'(L;eq;eqL;f;b)
≤ lattice-extend'(L;eq;eqL;f;f-union(deq-fset(eq);deq-fset(eq);a;as.λbs.as ⋃ bs"(b)))
BY
{ Unfold `lattice-extend\'` 0 }
1
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T ⟶ Point(L)
6. a : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
7. b : {ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
⊢ \/(λxs./\(f"(xs))"(a)) ∧ \/(λxs./\(f"(xs))"(b))
≤ \/(λxs./\(f"(xs))"(f-union(deq-fset(eq);deq-fset(eq);a;as.λbs.as ⋃ bs"(b))))
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. L : BoundedDistributiveLattice
4. eqL : EqDecider(Point(L))
5. f : T {}\mrightarrow{} Point(L)
6. a : \{ac:fset(fset(T))| \muparrow{}fset-antichain(eq;ac)\}
7. b : \{ac:fset(fset(T))| \muparrow{}fset-antichain(eq;ac)\}
\mvdash{} lattice-extend'(L;eq;eqL;f;a) \mwedge{} lattice-extend'(L;eq;eqL;f;b)
\mleq{} lattice-extend'(L;eq;eqL;f;f-union(deq-fset(eq);deq-fset(eq);a;as.\mlambda{}bs.as \mcup{} bs"(b)))
By
Latex:
Unfold `lattice-extend\mbackslash{}'` 0
Home
Index