Step
*
2
1
2
1
2
of Lemma
lattice-fset-meet_wf
1. l : BoundedLattice
2. eq : EqDecider(Point(l))
3. n : ℤ
4. 0 < n
5. ∀L1:Point(l) List
(||L1|| < n - 1
⇒ (∀L2:Point(l) List. (set-equal(Point(l);L1;L2)
⇒ (/\(L1) = /\(L2) ∈ Point(l)))))
6. u : Point(l)
7. v : Point(l) List
8. ||[u / v]|| < n
9. L2 : Point(l) List
10. set-equal(Point(l);[u / v];L2)
11. (u ∈ L2)
12. set-equal(Point(l);filter(λx.(¬b(eq x u));v);filter(λx.(¬b(eq x u));L2))
13. /\(filter(λx.(¬b(eq x u));v)) = /\(filter(λx.(¬b(eq x u));L2)) ∈ Point(l)
14. ∀L:Point(l) List. ((u ∈ L)
⇒ (/\(L) = u ∧ /\(filter(λx.(¬b(eq x u));L)) ∈ Point(l)))
⊢ /\([u / v]) = /\(L2) ∈ Point(l)
BY
{ ((RWO "-1" 0 THEN Auto) THEN EqCD THEN Auto THEN Reduce 0 THEN AutoSplit) }
Latex:
Latex:
1. l : BoundedLattice
2. eq : EqDecider(Point(l))
3. n : \mBbbZ{}
4. 0 < n
5. \mforall{}L1:Point(l) List
(||L1|| < n - 1 {}\mRightarrow{} (\mforall{}L2:Point(l) List. (set-equal(Point(l);L1;L2) {}\mRightarrow{} (/\mbackslash{}(L1) = /\mbackslash{}(L2)))))
6. u : Point(l)
7. v : Point(l) List
8. ||[u / v]|| < n
9. L2 : Point(l) List
10. set-equal(Point(l);[u / v];L2)
11. (u \mmember{} L2)
12. set-equal(Point(l);filter(\mlambda{}x.(\mneg{}\msubb{}(eq x u));v);filter(\mlambda{}x.(\mneg{}\msubb{}(eq x u));L2))
13. /\mbackslash{}(filter(\mlambda{}x.(\mneg{}\msubb{}(eq x u));v)) = /\mbackslash{}(filter(\mlambda{}x.(\mneg{}\msubb{}(eq x u));L2))
14. \mforall{}L:Point(l) List. ((u \mmember{} L) {}\mRightarrow{} (/\mbackslash{}(L) = u \mwedge{} /\mbackslash{}(filter(\mlambda{}x.(\mneg{}\msubb{}(eq x u));L))))
\mvdash{} /\mbackslash{}([u / v]) = /\mbackslash{}(L2)
By
Latex:
((RWO "-1" 0 THEN Auto) THEN EqCD THEN Auto THEN Reduce 0 THEN AutoSplit)
Home
Index