Step
*
1
of Lemma
lattice-hom-fset-join
1. l1 : BoundedLattice
2. l2 : BoundedLattice
3. eq1 : EqDecider(Point(l1))
4. eq2 : EqDecider(Point(l2))
5. f : Hom(l1;l2)
6. s : Base
7. s1 : Base
8. s = s1 ∈ (x,y:Point(l1) List//set-equal(Point(l1);x;y))
9. s ∈ Point(l1) List
10. s1 ∈ Point(l1) List
11. set-equal(Point(l1);s;s1)
⊢ (f \/(s)) = \/(f"(s1)) ∈ Point(l2)
BY
{ Assert ⌜((f \/(s)) = \/(f"(s)) ∈ Point(l2)) ∧ (\/(f"(s)) = \/(f"(s1)) ∈ Point(l2))⌝⋅ }
1
.....assertion.....
1. l1 : BoundedLattice
2. l2 : BoundedLattice
3. eq1 : EqDecider(Point(l1))
4. eq2 : EqDecider(Point(l2))
5. f : Hom(l1;l2)
6. s : Base
7. s1 : Base
8. s = s1 ∈ (x,y:Point(l1) List//set-equal(Point(l1);x;y))
9. s ∈ Point(l1) List
10. s1 ∈ Point(l1) List
11. set-equal(Point(l1);s;s1)
⊢ ((f \/(s)) = \/(f"(s)) ∈ Point(l2)) ∧ (\/(f"(s)) = \/(f"(s1)) ∈ Point(l2))
2
1. l1 : BoundedLattice
2. l2 : BoundedLattice
3. eq1 : EqDecider(Point(l1))
4. eq2 : EqDecider(Point(l2))
5. f : Hom(l1;l2)
6. s : Base
7. s1 : Base
8. s = s1 ∈ (x,y:Point(l1) List//set-equal(Point(l1);x;y))
9. s ∈ Point(l1) List
10. s1 ∈ Point(l1) List
11. set-equal(Point(l1);s;s1)
12. ((f \/(s)) = \/(f"(s)) ∈ Point(l2)) ∧ (\/(f"(s)) = \/(f"(s1)) ∈ Point(l2))
⊢ (f \/(s)) = \/(f"(s1)) ∈ Point(l2)
Latex:
Latex:
1. l1 : BoundedLattice
2. l2 : BoundedLattice
3. eq1 : EqDecider(Point(l1))
4. eq2 : EqDecider(Point(l2))
5. f : Hom(l1;l2)
6. s : Base
7. s1 : Base
8. s = s1
9. s \mmember{} Point(l1) List
10. s1 \mmember{} Point(l1) List
11. set-equal(Point(l1);s;s1)
\mvdash{} (f \mbackslash{}/(s)) = \mbackslash{}/(f"(s1))
By
Latex:
Assert \mkleeneopen{}((f \mbackslash{}/(s)) = \mbackslash{}/(f"(s))) \mwedge{} (\mbackslash{}/(f"(s)) = \mbackslash{}/(f"(s1)))\mkleeneclose{}\mcdot{}
Home
Index