Step
*
1
1
of Lemma
quotient-dl_wf
.....subterm..... T:t
1:n
1. l : BoundedDistributiveLattice
2. eq : Point(l) ⟶ Point(l) ⟶ ℙ
3. EquivRel(Point(l);x,y.eq[x;y])
4. ∀a,c,b,d:Point(l). (eq[a;c]
⇒ eq[b;d]
⇒ eq[a ∧ b;c ∧ d])
5. ∀a,c,b,d:Point(l). (eq[a;c]
⇒ eq[b;d]
⇒ eq[a ∨ b;c ∨ d])
6. l."meet" ∈ (x,y:Point(l)//eq[x;y]) ⟶ (x,y:Point(l)//eq[x;y]) ⟶ (x,y:Point(l)//eq[x;y])
7. l."join" ∈ (x,y:Point(l)//eq[x;y]) ⟶ (x,y:Point(l)//eq[x;y]) ⟶ (x,y:Point(l)//eq[x;y])
⊢ x,y:Point(l)//eq[x;y] ∈ Type
BY
{ Auto }
Latex:
Latex:
.....subterm..... T:t
1:n
1. l : BoundedDistributiveLattice
2. eq : Point(l) {}\mrightarrow{} Point(l) {}\mrightarrow{} \mBbbP{}
3. EquivRel(Point(l);x,y.eq[x;y])
4. \mforall{}a,c,b,d:Point(l). (eq[a;c] {}\mRightarrow{} eq[b;d] {}\mRightarrow{} eq[a \mwedge{} b;c \mwedge{} d])
5. \mforall{}a,c,b,d:Point(l). (eq[a;c] {}\mRightarrow{} eq[b;d] {}\mRightarrow{} eq[a \mvee{} b;c \mvee{} d])
6. l."meet" \mmember{} (x,y:Point(l)//eq[x;y]) {}\mrightarrow{} (x,y:Point(l)//eq[x;y]) {}\mrightarrow{} (x,y:Point(l)//eq[x;y])
7. l."join" \mmember{} (x,y:Point(l)//eq[x;y]) {}\mrightarrow{} (x,y:Point(l)//eq[x;y]) {}\mrightarrow{} (x,y:Point(l)//eq[x;y])
\mvdash{} x,y:Point(l)//eq[x;y] \mmember{} Type
By
Latex:
Auto
Home
Index