Nuprl Lemma : comb_for_swap_wf

λT,L,i,j,z. swap(L;i;j) ∈ T:Type ⟶ L:(T List) ⟶ i:ℕ||L|| ⟶ j:ℕ||L|| ⟶ (↓True) ⟶ (T List)


Proof




Definitions occuring in Statement :  swap: swap(L;i;j) length: ||as|| list: List int_seg: {i..j-} squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  swap_wf squash_wf true_wf int_seg_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType natural_numberEquality universeEquality

Latex:
\mlambda{}T,L,i,j,z.  swap(L;i;j)  \mmember{}  T:Type  {}\mrightarrow{}  L:(T  List)  {}\mrightarrow{}  i:\mBbbN{}||L||  {}\mrightarrow{}  j:\mBbbN{}||L||  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (T  List)



Date html generated: 2019_10_15-AM-10_58_07
Last ObjectModification: 2018_10_09-AM-09_57_47

Theory : list!


Home Index