Nuprl Lemma : swap_wf

[T:Type]. ∀[L:T List]. ∀[i,j:ℕ||L||].  (swap(L;i;j) ∈ List)


Proof




Definitions occuring in Statement :  swap: swap(L;i;j) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T swap: swap(L;i;j)
Lemmas referenced :  permute_list_wf flip_wf length_wf_nat int_seg_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality natural_numberEquality universeIsType because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i,j:\mBbbN{}||L||].    (swap(L;i;j)  \mmember{}  T  List)



Date html generated: 2019_10_15-AM-10_57_57
Last ObjectModification: 2018_09_27-AM-09_37_29

Theory : list!


Home Index