Nuprl Lemma : swap_wf
∀[T:Type]. ∀[L:T List]. ∀[i,j:ℕ||L||].  (swap(L;i;j) ∈ T List)
Proof
Definitions occuring in Statement : 
swap: swap(L;i;j)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
swap: swap(L;i;j)
Lemmas referenced : 
permute_list_wf, 
flip_wf, 
length_wf_nat, 
int_seg_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality, 
natural_numberEquality, 
universeIsType, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i,j:\mBbbN{}||L||].    (swap(L;i;j)  \mmember{}  T  List)
Date html generated:
2019_10_15-AM-10_57_57
Last ObjectModification:
2018_09_27-AM-09_37_29
Theory : list!
Home
Index