Nuprl Lemma : cons_interleaving2

[T:Type]. ∀x:T. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L)  interleaving(T;L1;[x L2];[x L]))


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop:
Lemmas referenced :  cons_wf interleaving_symmetry cons_interleaving interleaving_wf list_wf
Rules used in proof :  because_Cache sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination productElimination independent_functionElimination isect_memberFormation_alt lambdaFormation universeIsType universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L,L1,L2:T  List.    (interleaving(T;L1;L2;L)  {}\mRightarrow{}  interleaving(T;L1;[x  /  L2];[x  /  L]))



Date html generated: 2019_10_15-AM-10_55_40
Last ObjectModification: 2018_09_27-AM-10_43_21

Theory : list!


Home Index