Nuprl Lemma : cons_interleaving2
∀[T:Type]. ∀x:T. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L) 
⇒ interleaving(T;L1;[x / L2];[x / L]))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
cons_wf, 
interleaving_symmetry, 
cons_interleaving, 
interleaving_wf, 
list_wf
Rules used in proof : 
because_Cache, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
isect_memberFormation_alt, 
lambdaFormation, 
universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L,L1,L2:T  List.    (interleaving(T;L1;L2;L)  {}\mRightarrow{}  interleaving(T;L1;[x  /  L2];[x  /  L]))
Date html generated:
2019_10_15-AM-10_55_40
Last ObjectModification:
2018_09_27-AM-10_43_21
Theory : list!
Home
Index