Nuprl Lemma : interleaving_symmetry

[T:Type]. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L) ⇐⇒ interleaving(T;L2;L1;L))


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  interleaving: interleaving(T;L1;L2;L) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T nat: guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top prop: disjoint_sublists: disjoint_sublists(T;L1;L2;L) cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B so_lambda: λ2x.t[x] less_than: a < b squash: T le: A ≤ B so_apply: x[s] rev_implies:  Q
Lemmas referenced :  nat_properties decidable__equal_int length_wf add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf false_wf non_neg_length decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma le_wf int_seg_properties equal_wf int_seg_wf increasing_wf length_wf_nat all_wf select_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf not_wf exists_wf nat_wf add_nat_wf disjoint_sublists_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut sqequalHypSubstitution productElimination thin introduction extract_by_obid isectElimination equalityTransitivity hypothesis equalitySymmetry applyLambdaEquality setElimination rename hypothesisEquality dependent_functionElimination addEquality cumulativity unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_isectElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality because_Cache applyEquality functionExtensionality independent_functionElimination productEquality imageElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L,L1,L2:T  List.    (interleaving(T;L1;L2;L)  \mLeftarrow{}{}\mRightarrow{}  interleaving(T;L2;L1;L))



Date html generated: 2017_10_01-AM-08_36_15
Last ObjectModification: 2017_07_26-PM-04_26_10

Theory : list!


Home Index