Nuprl Lemma : interleaved_family_wf
∀[T,I:Type]. ∀[L:I ⟶ (T List)]. ∀[L2:T List].  (interleaved_family(T;I;L;L2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
interleaved_family: interleaved_family(T;I;L;L2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
interleaved_family: interleaved_family(T;I;L;L2)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
int_seg_wf, 
length_wf, 
interleaved_family_occurence_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality, 
because_Cache, 
functionIsType, 
inhabitedIsType, 
universeEquality
Latex:
\mforall{}[T,I:Type].  \mforall{}[L:I  {}\mrightarrow{}  (T  List)].  \mforall{}[L2:T  List].    (interleaved\_family(T;I;L;L2)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_57_55
Last ObjectModification:
2018_09_27-AM-09_50_15
Theory : list!
Home
Index