Nuprl Lemma : interleaved_family_wf

[T,I:Type]. ∀[L:I ⟶ (T List)]. ∀[L2:T List].  (interleaved_family(T;I;L;L2) ∈ ℙ)


Proof




Definitions occuring in Statement :  interleaved_family: interleaved_family(T;I;L;L2) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T interleaved_family: interleaved_family(T;I;L;L2) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf int_seg_wf length_wf interleaved_family_occurence_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality natural_numberEquality applyEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality because_Cache functionIsType inhabitedIsType universeEquality

Latex:
\mforall{}[T,I:Type].  \mforall{}[L:I  {}\mrightarrow{}  (T  List)].  \mforall{}[L2:T  List].    (interleaved\_family(T;I;L;L2)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_15-AM-10_57_55
Last ObjectModification: 2018_09_27-AM-09_50_15

Theory : list!


Home Index