Nuprl Lemma : interleaved_family_occurence_wf

[T,I:Type]. ∀[L:I ⟶ (T List)]. ∀[L2:T List]. ∀[f:i:I ⟶ ℕ||L i|| ⟶ ℕ||L2||].
  (interleaved_family_occurence(T;I;L;L2;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  interleaved_family_occurence: interleaved_family_occurence(T;I;L;L2;f) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  interleaved_family_occurence: interleaved_family_occurence(T;I;L;L2;f) uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T ge: i ≥  nat: so_apply: x[s]
Lemmas referenced :  list_wf exists_wf not_wf le_wf nat_properties lelt_wf non_neg_length int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf equal_wf length_wf int_seg_wf length_wf_nat increasing_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality applyEquality hypothesis because_Cache natural_numberEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry setEquality functionEquality axiomEquality universeEquality

Latex:
\mforall{}[T,I:Type].  \mforall{}[L:I  {}\mrightarrow{}  (T  List)].  \mforall{}[L2:T  List].  \mforall{}[f:i:I  {}\mrightarrow{}  \mBbbN{}||L  i||  {}\mrightarrow{}  \mBbbN{}||L2||].
    (interleaved\_family\_occurence(T;I;L;L2;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-02_03_59
Last ObjectModification: 2016_01_15-PM-11_29_33

Theory : list!


Home Index