Nuprl Lemma : interleaved_family_occurence_wf
∀[T,I:Type]. ∀[L:I ⟶ (T List)]. ∀[L2:T List]. ∀[f:i:I ⟶ ℕ||L i|| ⟶ ℕ||L2||].
  (interleaved_family_occurence(T;I;L;L2;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
interleaved_family_occurence: interleaved_family_occurence(T;I;L;L2;f), 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
interleaved_family_occurence: interleaved_family_occurence(T;I;L;L2;f), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
nat: ℕ, 
so_apply: x[s]
Lemmas referenced : 
list_wf, 
exists_wf, 
not_wf, 
le_wf, 
nat_properties, 
lelt_wf, 
non_neg_length, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
select_wf, 
equal_wf, 
length_wf, 
int_seg_wf, 
length_wf_nat, 
increasing_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
functionEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T,I:Type].  \mforall{}[L:I  {}\mrightarrow{}  (T  List)].  \mforall{}[L2:T  List].  \mforall{}[f:i:I  {}\mrightarrow{}  \mBbbN{}||L  i||  {}\mrightarrow{}  \mBbbN{}||L2||].
    (interleaved\_family\_occurence(T;I;L;L2;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-02_03_59
Last ObjectModification:
2016_01_15-PM-11_29_33
Theory : list!
Home
Index