Nuprl Lemma : interleaved_split
∀[T:Type]
  ∀L:T List
    ∀[P:T ⟶ ℙ]
      ((∀x:T. Dec(P[x]))
      
⇒ (∃L1,L2:T List
           (interleaving(T;L1;L2;L)
           ∧ (∀x:T. ((x ∈ L1) 
⇐⇒ (x ∈ L) ∧ P[x]))
           ∧ (∀x:T. ((x ∈ L2) 
⇐⇒ (x ∈ L) ∧ (¬P[x]))))))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
not_wf, 
subtype_rel_self, 
l_member_wf, 
iff_wf, 
interleaving_wf, 
list_wf, 
exists_wf, 
decidable_wf, 
all_wf, 
uall_wf, 
list_induction, 
nil_wf, 
false_wf, 
nil_member, 
interleaving_of_nil, 
cons_wf, 
equal_wf, 
and_wf, 
or_wf, 
cons_member, 
cons_interleaving, 
interleaving_symmetry
Rules used in proof : 
universeIsType, 
dependent_functionElimination, 
because_Cache, 
rename, 
independent_functionElimination, 
productEquality, 
hypothesis, 
applyEquality, 
universeEquality, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
lambdaFormation, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_pairEquality, 
dependent_pairFormation, 
functionIsType, 
promote_hyp, 
unionElimination, 
inhabitedIsType, 
inlFormation, 
inrFormation, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x:T.  Dec(P[x]))
            {}\mRightarrow{}  (\mexists{}L1,L2:T  List
                      (interleaving(T;L1;L2;L)
                      \mwedge{}  (\mforall{}x:T.  ((x  \mmember{}  L1)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L)  \mwedge{}  P[x]))
                      \mwedge{}  (\mforall{}x:T.  ((x  \mmember{}  L2)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L)  \mwedge{}  (\mneg{}P[x]))))))
Date html generated:
2019_10_15-AM-10_57_03
Last ObjectModification:
2018_09_27-AM-10_28_26
Theory : list!
Home
Index