Nuprl Lemma : l_all2_wf

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ T ⟶ ℙ].  ((∀x<y∈L.P[x;y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  l_all2: (∀x<y∈L.P[x; y]) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_all2: (∀x<y∈L.P[x; y]) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] so_apply: x[s]
Lemmas referenced :  all_wf l_before_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType inhabitedIsType universeEquality isect_memberEquality cumulativity because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x<y\mmember{}L.P[x;y])  \mmember{}  \mBbbP{})



Date html generated: 2019_10_15-AM-10_54_35
Last ObjectModification: 2018_09_27-AM-09_37_32

Theory : list!


Home Index