Nuprl Lemma : l_all2_wf
∀[T:Type]. ∀[L:T List]. ∀[P:T ⟶ T ⟶ ℙ].  ((∀x<y∈L.P[x;y]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
l_all2: (∀x<y∈L.P[x; y])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
l_all2: (∀x<y∈L.P[x; y])
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
l_before_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
hypothesis, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
inhabitedIsType, 
universeEquality, 
isect_memberEquality, 
cumulativity, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x<y\mmember{}L.P[x;y])  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_54_35
Last ObjectModification:
2018_09_27-AM-09_37_32
Theory : list!
Home
Index