Nuprl Lemma : l_all_since_wf
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[L:T List]. ∀[a:T].  ((∀x≥a∈L.P[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
l_all_since: (∀x≥a∈L.P[x])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
l_all_since: (∀x≥a∈L.P[x])
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_rel_self, 
all_wf, 
l_before_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
lambdaEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality, 
because_Cache, 
functionIsType, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[L:T  List].  \mforall{}[a:T].    ((\mforall{}x\mgeq{}a\mmember{}L.P[x])  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_54_37
Last ObjectModification:
2018_09_27-AM-09_38_58
Theory : list!
Home
Index