Nuprl Lemma : map_swap

[A,B:Type]. ∀[f:B ⟶ A]. ∀[x:B List]. ∀[i,j:ℕ||x||].  (map(f;swap(x;i;j)) swap(map(f;x);i;j) ∈ (A List))


Proof




Definitions occuring in Statement :  swap: swap(L;i;j) length: ||as|| map: map(f;as) list: List int_seg: {i..j-} uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T swap: swap(L;i;j)
Lemmas referenced :  map_permute_list flip_wf length_wf_nat int_seg_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality sqequalRule isect_memberEquality axiomEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:B  {}\mrightarrow{}  A].  \mforall{}[x:B  List].  \mforall{}[i,j:\mBbbN{}||x||].    (map(f;swap(x;i;j))  =  swap(map(f;x);i;j))



Date html generated: 2016_05_15-PM-02_05_06
Last ObjectModification: 2015_12_27-AM-00_22_00

Theory : list!


Home Index