Nuprl Lemma : map_swap
∀[A,B:Type]. ∀[f:B ⟶ A]. ∀[x:B List]. ∀[i,j:ℕ||x||].  (map(f;swap(x;i;j)) = swap(map(f;x);i;j) ∈ (A List))
Proof
Definitions occuring in Statement : 
swap: swap(L;i;j)
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
swap: swap(L;i;j)
Lemmas referenced : 
map_permute_list, 
flip_wf, 
length_wf_nat, 
int_seg_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:B  {}\mrightarrow{}  A].  \mforall{}[x:B  List].  \mforall{}[i,j:\mBbbN{}||x||].    (map(f;swap(x;i;j))  =  swap(map(f;x);i;j))
Date html generated:
2016_05_15-PM-02_05_06
Last ObjectModification:
2015_12_27-AM-00_22_00
Theory : list!
Home
Index