Nuprl Lemma : safety_induced

[A,B:Type].  ∀f:A ⟶ B. ∀[P:(B List) ⟶ ℙ]. (safety(B;L.P[L])  safety(A;L.P[map(f;L)]))


Proof




Definitions occuring in Statement :  safety: safety(A;tr.P[tr]) map: map(f;as) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  safety: safety(A;tr.P[tr]) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  map_wf iseg_wf list_wf all_wf iseg_map
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin introduction extract_by_obid isectElimination hypothesisEquality independent_functionElimination applyEquality lambdaEquality functionEquality functionIsType universeIsType universeEquality inhabitedIsType

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}[P:(B  List)  {}\mrightarrow{}  \mBbbP{}].  (safety(B;L.P[L])  {}\mRightarrow{}  safety(A;L.P[map(f;L)]))



Date html generated: 2019_10_15-AM-10_58_25
Last ObjectModification: 2018_09_27-AM-09_47_02

Theory : list!


Home Index