Nuprl Lemma : safety_induced
∀[A,B:Type].  ∀f:A ⟶ B. ∀[P:(B List) ⟶ ℙ]. (safety(B;L.P[L]) 
⇒ safety(A;L.P[map(f;L)]))
Proof
Definitions occuring in Statement : 
safety: safety(A;tr.P[tr])
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
safety: safety(A;tr.P[tr])
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
map_wf, 
iseg_wf, 
list_wf, 
all_wf, 
iseg_map
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
functionEquality, 
functionIsType, 
universeIsType, 
universeEquality, 
inhabitedIsType
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}[P:(B  List)  {}\mrightarrow{}  \mBbbP{}].  (safety(B;L.P[L])  {}\mRightarrow{}  safety(A;L.P[map(f;L)]))
Date html generated:
2019_10_15-AM-10_58_25
Last ObjectModification:
2018_09_27-AM-09_47_02
Theory : list!
Home
Index