Nuprl Lemma : iseg_map
∀[A,B:Type].  ∀f:A ⟶ B. ∀L1,L2:A List.  (L1 ≤ L2 
⇒ map(f;L1) ≤ map(f;L2))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
iseg: l1 ≤ l2
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
Lemmas referenced : 
exists_wf, 
list_wf, 
equal_wf, 
map_wf, 
append_wf, 
map_append_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
inhabitedIsType, 
universeIsType, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L1,L2:A  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  map(f;L1)  \mleq{}  map(f;L2))
Date html generated:
2019_10_15-AM-10_58_23
Last ObjectModification:
2018_09_27-AM-09_47_05
Theory : list!
Home
Index