Nuprl Lemma : iseg_map

[A,B:Type].  ∀f:A ⟶ B. ∀L1,L2:A List.  (L1 ≤ L2  map(f;L1) ≤ map(f;L2))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] top: Top
Lemmas referenced :  exists_wf list_wf equal_wf map_wf append_wf map_append_sq
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis hyp_replacement equalitySymmetry applyLambdaEquality introduction extract_by_obid isectElimination hypothesisEquality lambdaEquality functionEquality inhabitedIsType universeIsType universeEquality isect_memberEquality voidElimination voidEquality dependent_pairFormation

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L1,L2:A  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  map(f;L1)  \mleq{}  map(f;L2))



Date html generated: 2019_10_15-AM-10_58_23
Last ObjectModification: 2018_09_27-AM-09_47_05

Theory : list!


Home Index