Nuprl Lemma : safety_nil
∀[T:Type]. ∀[P:(T List) ⟶ ℙ].  ((∃l:T List. P[l]) 
⇒ safety(T;x.P[x]) 
⇒ P[[]])
Proof
Definitions occuring in Statement : 
safety: safety(A;tr.P[tr])
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
safety: safety(A;tr.P[tr])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
list_wf, 
iseg_wf, 
exists_wf, 
nil_wf, 
nil_iseg
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionIsType, 
universeIsType, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].    ((\mexists{}l:T  List.  P[l])  {}\mRightarrow{}  safety(T;x.P[x])  {}\mRightarrow{}  P[[]])
Date html generated:
2019_10_15-AM-10_54_12
Last ObjectModification:
2018_09_27-AM-10_02_39
Theory : list!
Home
Index