Nuprl Lemma : safety_nil

[T:Type]. ∀[P:(T List) ⟶ ℙ].  ((∃l:T List. P[l])  safety(T;x.P[x])  P[[]])


Proof




Definitions occuring in Statement :  safety: safety(A;tr.P[tr]) nil: [] list: List uall: [x:A]. B[x] prop: so_apply: x[s] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  safety: safety(A;tr.P[tr]) uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} all: x:A. B[x]
Lemmas referenced :  all_wf list_wf iseg_wf exists_wf nil_wf nil_iseg
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality functionEquality applyEquality functionIsType universeIsType universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].    ((\mexists{}l:T  List.  P[l])  {}\mRightarrow{}  safety(T;x.P[x])  {}\mRightarrow{}  P[[]])



Date html generated: 2019_10_15-AM-10_54_12
Last ObjectModification: 2018_09_27-AM-10_02_39

Theory : list!


Home Index