Nuprl Definition : provisional-type
Provisional(T) == x,y:ok:ℙ × T supposing ↓ok//((↓fst(x)
⇐⇒ ↓fst(y)) ∧ ((↓fst(x))
⇒ ((snd(x)) = (snd(y)) ∈ T)))
Definitions occuring in Statement :
quotient: x,y:A//B[x; y]
,
uimplies: b supposing a
,
prop: ℙ
,
pi1: fst(t)
,
pi2: snd(t)
,
iff: P
⇐⇒ Q
,
squash: ↓T
,
implies: P
⇒ Q
,
and: P ∧ Q
,
product: x:A × B[x]
,
equal: s = t ∈ T
Definitions occuring in definition :
quotient: x,y:A//B[x; y]
,
product: x:A × B[x]
,
prop: ℙ
,
uimplies: b supposing a
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
squash: ↓T
,
pi1: fst(t)
,
equal: s = t ∈ T
,
pi2: snd(t)
FDL editor aliases :
prov-type
prov-type
prov-type
Latex:
Provisional(T) ==
x,y:ok:\mBbbP{} \mtimes{} T supposing \mdownarrow{}ok//((\mdownarrow{}fst(x) \mLeftarrow{}{}\mRightarrow{} \mdownarrow{}fst(y)) \mwedge{} ((\mdownarrow{}fst(x)) {}\mRightarrow{} ((snd(x)) = (snd(y)))))
Date html generated:
2020_05_20-AM-08_00_37
Last ObjectModification:
2020_05_17-PM-06_47_01
Theory : monads
Home
Index