Nuprl Lemma : fps-elim-x-sub

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f,g:PowerSeries(X;r)].  ((f-g)(x:=0) (f(x:=0)-g(x:=0)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-elim-x: f(x:=0) fps-sub: (f-g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-sub: (f-g) squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf fps-elim-x-add fps-neg_wf fps-add_wf fps-elim-x_wf iff_weakening_equal power-series_wf crng_wf fps-elim-x-neg deq_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache independent_isectElimination cumulativity natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f,g:PowerSeries(X;r)].
        ((f-g)(x:=0)  =  (f(x:=0)-g(x:=0))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_59_33
Last ObjectModification: 2017_07_26-PM-06_33_55

Theory : power!series


Home Index