Nuprl Lemma : open-random-variable
∀p:FinProbSpace. ∀n:ℕ. ∀C:p-open(p).  (λs.(C <n, s>) ∈ RandomVariable(p;n))
Proof
Definitions occuring in Statement : 
p-open: p-open(p), 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
nat: ℕ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
apply: f a, 
lambda: λx.A[x], 
pair: <a, b>
Definitions unfolded in proof : 
random-variable: RandomVariable(p;n), 
p-outcome: Outcome, 
all: ∀x:A. B[x], 
member: t ∈ T, 
p-open: p-open(p), 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a
Lemmas referenced : 
int_seg_wf, 
p-outcome_wf, 
subtype_rel_set, 
rationals_wf, 
lelt_wf, 
int-subtype-rationals, 
p-open_wf, 
nat_wf, 
finite-prob-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lambdaEquality, 
applyEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_pairEquality, 
functionEquality, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
intEquality, 
independent_isectElimination
Latex:
\mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}C:p-open(p).    (\mlambda{}s.(C  <n,  s>)  \mmember{}  RandomVariable(p;n))
Date html generated:
2016_05_15-PM-11_48_54
Last ObjectModification:
2015_12_28-PM-07_14_44
Theory : randomness
Home
Index