Nuprl Lemma : rv-disjoint-rv-add2
∀p:FinProbSpace. ∀n:ℕ. ∀X,Y,Z:RandomVariable(p;n).
  (rv-disjoint(p;n;Y;X) ⇒ rv-disjoint(p;n;Z;X) ⇒ rv-disjoint(p;n;Y + Z;X))
Proof
Definitions occuring in Statement : 
rv-disjoint: rv-disjoint(p;n;X;Y), 
rv-add: X + Y, 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-disjoint_wf, 
random-variable_wf, 
nat_wf, 
finite-prob-space_wf, 
rv-add_wf, 
rv-disjoint-symmetry, 
rv-disjoint-rv-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X,Y,Z:RandomVariable(p;n).
    (rv-disjoint(p;n;Y;X)  {}\mRightarrow{}  rv-disjoint(p;n;Z;X)  {}\mRightarrow{}  rv-disjoint(p;n;Y  +  Z;X))
Date html generated:
2016_05_15-PM-11_47_18
Last ObjectModification:
2015_12_28-PM-07_15_56
Theory : randomness
Home
Index