Nuprl Lemma : slln-lemma4
∀p:FinProbSpace. ∀f:ℕ ⟶ ℕ. ∀X:n:ℕ ⟶ RandomVariable(p;f[n]).
  (rv-iid(p;n.f[n];n.X[n])
  ⇒ nullset(p;λs.∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. (n < m ∧ (q ≤ |Σ0 ≤ i < m. (1/m) * (X[i] s)|))))) 
     supposing E(f[0];X[0]) = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
rv-iid: rv-iid(p;n.f[n];i.X[i]), 
nullset: nullset(p;S), 
expectation: E(n;F), 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
qsum: Σa ≤ j < b. E[j], 
qabs: |r|, 
qle: r ≤ s, 
qless: r < s, 
qdiv: (r/s), 
qmul: r * s, 
rationals: ℚ, 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
rv-iid: rv-iid(p;n.f[n];i.X[i]), 
and: P ∧ Q, 
rv-identically-distributed: rv-identically-distributed(p;n.f[n];i.X[i]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
cand: A c∧ B, 
guard: {T}
Lemmas referenced : 
slln-lemma3, 
expectation_wf, 
nat_wf, 
false_wf, 
le_wf, 
rv-compose_wf, 
qmul_wf, 
rationals_wf, 
int_seg_wf, 
equal-wf-T-base, 
rv-iid_wf, 
random-variable_wf, 
finite-prob-space_wf, 
and_wf, 
equal_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation, 
axiomEquality, 
rename, 
productElimination, 
isectElimination, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
independent_functionElimination, 
baseClosed, 
functionEquality, 
hyp_replacement, 
equalitySymmetry, 
equalityTransitivity, 
setEquality
Latex:
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).
    (rv-iid(p;n.f[n];n.X[n])
    {}\mRightarrow{}  nullset(p;\mlambda{}s.\mexists{}q:\mBbbQ{}.  (0  <  q  \mwedge{}  (\mforall{}n:\mBbbN{}.  \mexists{}m:\mBbbN{}.  (n  <  m  \mwedge{}  (q  \mleq{}  |\mSigma{}0  \mleq{}  i  <  m.  (1/m)  *  (X[i]  s)|))))) 
          supposing  E(f[0];X[0])  =  0)
Date html generated:
2016_10_26-AM-06_54_56
Last ObjectModification:
2016_07_12-AM-08_06_33
Theory : randomness
Home
Index