Step * 1 of Lemma boundary-singleton-complex


1. : ℕ
2. : ℕ
3. {c:ℚCube(k)| dim(c) n ∈ ℤ
⊢ ∂(singleton-complex(c)) remove-repeats(rc-deq(k);rat-cube-faces(k;c))
BY
(RepUR ``rat-complex-boundary singleton-complex face-complex`` THEN (SplitOnConclITE THENA Auto)) }

1
.....truecase..... 
1. : ℕ
2. : ℕ
3. {c:ℚCube(k)| dim(c) n ∈ ℤ
4. ↑Inhabited(c)
⊢ rat-cube-sub-complex(λf.in-complex-boundary(k;f;[c]);remove-repeats(rc-deq(k);concat([rat-cube-faces(k;c)]))) 
remove-repeats(rc-deq(k);rat-cube-faces(k;c))

2
.....falsecase..... 
1. : ℕ
2. : ℕ
3. {c:ℚCube(k)| dim(c) n ∈ ℤ
4. ¬↑Inhabited(c)
⊢ rat-cube-sub-complex(λf.in-complex-boundary(k;f;[c]);remove-repeats(rc-deq(k);concat([[]]))) 
remove-repeats(rc-deq(k);rat-cube-faces(k;c))


Latex:


Latex:

1.  k  :  \mBbbN{}
2.  n  :  \mBbbN{}
3.  c  :  \{c:\mBbbQ{}Cube(k)|  dim(c)  =  n\} 
\mvdash{}  \mpartial{}(singleton-complex(c))  \msim{}  remove-repeats(rc-deq(k);rat-cube-faces(k;c))


By


Latex:
(RepUR  ``rat-complex-boundary  singleton-complex  face-complex``  0  THEN  (SplitOnConclITE  THENA  Auto))




Home Index