Step
*
1
1
2
1
of Lemma
equipollent-nat-rationals
1. L : (ℤ × ℕ+) List
2. 0 < ||[1 / map(λp.(snd(p));L)]||
3. 0 ≤ imax-list([1 / map(λp.(snd(p));L)])
4. ↑is-qrep(<1, imax-list([1 / map(λp.(snd(p));L)]) + 1>)
5. i : ℕ
6. i < ||L||
7. <1, imax-list([1 / map(λp.(snd(p));L)]) + 1> = L[i] ∈ (ℤ × ℕ+)
⊢ False
BY
{ Assert ⌜(imax-list([1 / map(λp.(snd(p));L)]) + 1 ∈ map(λp.(snd(p));L))⌝⋅ }
1
.....assertion.....
1. L : (ℤ × ℕ+) List
2. 0 < ||[1 / map(λp.(snd(p));L)]||
3. 0 ≤ imax-list([1 / map(λp.(snd(p));L)])
4. ↑is-qrep(<1, imax-list([1 / map(λp.(snd(p));L)]) + 1>)
5. i : ℕ
6. i < ||L||
7. <1, imax-list([1 / map(λp.(snd(p));L)]) + 1> = L[i] ∈ (ℤ × ℕ+)
⊢ (imax-list([1 / map(λp.(snd(p));L)]) + 1 ∈ map(λp.(snd(p));L))
2
1. L : (ℤ × ℕ+) List
2. 0 < ||[1 / map(λp.(snd(p));L)]||
3. 0 ≤ imax-list([1 / map(λp.(snd(p));L)])
4. ↑is-qrep(<1, imax-list([1 / map(λp.(snd(p));L)]) + 1>)
5. i : ℕ
6. i < ||L||
7. <1, imax-list([1 / map(λp.(snd(p));L)]) + 1> = L[i] ∈ (ℤ × ℕ+)
8. (imax-list([1 / map(λp.(snd(p));L)]) + 1 ∈ map(λp.(snd(p));L))
⊢ False
Latex:
Latex:
1. L : (\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}) List
2. 0 < ||[1 / map(\mlambda{}p.(snd(p));L)]||
3. 0 \mleq{} imax-list([1 / map(\mlambda{}p.(snd(p));L)])
4. \muparrow{}is-qrep(ə, imax-list([1 / map(\mlambda{}p.(snd(p));L)]) + 1>)
5. i : \mBbbN{}
6. i < ||L||
7. ə, imax-list([1 / map(\mlambda{}p.(snd(p));L)]) + 1> = L[i]
\mvdash{} False
By
Latex:
Assert \mkleeneopen{}(imax-list([1 / map(\mlambda{}p.(snd(p));L)]) + 1 \mmember{} map(\mlambda{}p.(snd(p));L))\mkleeneclose{}\mcdot{}
Home
Index